Time-frequency localization operators: A geometric phase space approach

نویسنده

  • Ingrid Daubechies
چکیده

We define a set of operators which localize in both time and frequency. Tltese operators are similar to but different from the low-pass time-liting operators, the singular functions of which are the prolate spheroidal wave functions. Our construction differs from the usual ap proach in that we treat the time-frequency plane as one geometric whole (phase space) rather than as two separate spaces. For disk-shaped or ellipse-shaped domains in the time-frequency plane, the associated localization operators are remarkably simple. ”heir eigenfunctions are Hermite functions, and the corresponding eigenvalues are given by simple explicit formulas involving the incomplete gamma functions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Symbolic Calculus and Fredholm Property for Localization Operators

We study the composition of time-frequency localization operators (wavepacket operators) and develop a symbolic calculus of such operators on modulation spaces. The use of time-frequency methods (phase space methods) allows the use of rough symbols of ultra-rapid growth in place of smooth symbols in the standard classes. As the main application it is shown that, in general, a localization opera...

متن کامل

Localization operators on homogeneous spaces

Let $G$ be a locally compact group, $H$ be a compact subgroup of $G$ and $varpi$ be a representation of the homogeneous space $G/H$ on a Hilbert space $mathcal H$. For $psi in L^p(G/H), 1leq p leqinfty$, and an admissible wavelet $zeta$ for $varpi$, we define the localization operator $L_{psi,zeta} $ on $mathcal H$ and we show that it is a bounded operator. Moreover, we prove that the localizat...

متن کامل

Localization of Massless Spinning Particles and the Berry Phase

The components of the position operator, at a fixed time, for a massless and spinning particle with given helicity λ described in terms of bosonic degrees of freedom have an anomalous commutator proportional to λ. The position operator generates translations in momentum space. We show that a ray-representation for these translations emerges due to the non-commuting components of the position op...

متن کامل

A Class of compact operators on homogeneous spaces

Let  $varpi$ be a representation of the homogeneous space $G/H$, where $G$ be a locally compact group and  $H$ be a compact subgroup of $G$. For  an admissible wavelet $zeta$ for $varpi$  and $psi in L^p(G/H), 1leq p <infty$, we determine a class of bounded  compact operators  which are related to continuous wavelet transforms on homogeneous spaces and they are called localization operators.

متن کامل

Localization Operators via Time-Frequency Analysis

A systematic overview of localization operators using a time-frequency approach is given. Sufficient and necessary regularity results for localization operators with symbols and windows living in various function spaces (such as L or modulation spaces) are discussed. Finally, an exact and an asymptotic product formulae are presented.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Information Theory

دوره 34  شماره 

صفحات  -

تاریخ انتشار 1988